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A study is presented of the still-unsolved problem of estimating thermodynamic 
property values in a region intermediate between the critical region in which the 
scaling laws apply, and regions further from critical, where classical behavior 
prevails. A procedure has been developed in which a varying weighting function 
is used in obtaining a weighted "average" of the scaled and the classical 
Helmholtz free energy. Other properties are then obtained by differentiation. It 
is first demonstrated that it is fundamentally impossible for the "averaged" 
Helmholtz free energy and its first two derivatives to all be intermediate between 
the corresponding values from the scaled and the classical formulations. The 
procedure has been developed and tested for steam. The scaled function is the 
simple linear model of Murphy et al., the classical equation that of Pollak. The 
properties of power-weighted switch functions, particularly with respect to the 
behavior of higher-order derivatives, and the choice of the boundaries of the 
switching region, were examined in detail and optimized by proper choice of 
parameters. It is shown that a reasonably smooth transfer from the scaled to the 
classical region can be achieved as far as free energy, energy, and specific heat 
C v are concerned. For satisfactory behavior of all second derivative properties, 
the two formulations need to be more compatible in the switching region than 
they are in the present case. 
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1. I N T R O D U C T I O N  

A s o m e w h a t  s t r ange  p r o b l e m  arises in r e p r e s e n t i n g  the  t h e r m o d y n a m i c  

p rope r t i e s  of  f lu id  subs tances .  I n  r e c e n t  years ,  i t  has  b e c o m e  e v i d e n t  tha t  

the  o lde r  p r o c e d u r e s  of  b a s i n g  es t ima tes  for  the  effects  of  i n t e r a c t i o n  

b e t w e e n  m o l e c u l e s  o n  e q u a t i o n s  l ike tha t  of  v a n  de r  W a a l s  d id  n o t  ac tua l ly  

s u c c e e d  in r e p r e s e n t i n g  p rope r t i e s  a c c u r a t e l y  close to the  cr i t ica l  po in t .  T h e  

fa i lu re  was  e v i d e n t  n o t  o n l y  in a r eg ion  of  c o e x i s t e n c e  of  v a p o r  a n d  l iqu id  
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just below the critical temperature but also for a limited range of tempera- 
ture above for densities near the critical density. While it had once been 
supposed that special refinements of the old equations of state like van der 
Waals would be enough to take care of the problem, it has become 
apparent in recent years that something else is involved in the critical 
region. The accurate representation of properties in that region has in- 
volved something that is referred to as "scaling" or the use of a scaled 
equation. While this new proccedure does very well in a limited region near 
the critical point, and while there may be ways of extending the representa- 
tion with considerable accuracy somewhat further way, it still appears that 
some unsolved problems remain in regard to extending the critical region 
treatment to the entire region of interest. This would involve densities of the 
fluid that would range all the way from zero up into high density regions 
such as are typical of the liquid. 

It is to be noted that equations of state of such classical forms as are 
typified by that of van der Waals, and those that are equivalent to sums of 
virial series, are generally successful over broad ranges of density and 
temperature that would cover all regions of interest for engineering uses, 
other than the critical region. It becomes of interest to see if there is a way 
of making use of these two representations, the scaled and the classical, 
which are successful in their respective regions, and to do something which 
would in some way bridge over the intermediate region, so that we might 
have a numerically acceptable practical way of representing properties 
throughout the entire region of interest. An attempt is to be presented at 
producing a smooth continuation of such a type between two regions, one 
near the critical point and the other far away. 

2. IDEA OF A SWITCHING FUNCTION 

Chapela and Rowlinson [1] applied a switching procedure directly to 
pressure data for carbon dioxide and methane according to the equation 

p = f ( r ) P  A + [1 - f ( r ) ] P  s (1) 

with f ( r )  as a specially chosen function having the value "zero" at the 
critical point and rising substantially to the value "one" far away from the 
critical point. The quantity r is one of the parametric variables, r and 0, as 
used in simple scaled representations [2, 3]. Values for related thermody- 
namic properties at higher density, such as for the liquid, were apparently 
arrived at by numerical, or tabular, integration processes. Complete results 
of integration as an overall formulation in global closed form do not appear 
to have been given by Chapela and Rowlinson [1]. 
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In the present approach the procedure is one of taking the Helmholtz 
free energy representations for the two separate types of formulation and 
forming a linear combination of the two quantities, using a variable 
weighting function. A suggestion for such a procedure was made in 1969 by 
Kestin [4]. The advantage is that all other thermodynamic properties follow 
by differentiation. 

The arrangement of the weighting function in the present case is made 
in such a way that it has its full value, that is, the number "1" for a 
considerable region around the critical point, and it has the other extreme 
value, "0," for the total region far away from the critical point. Then there 
is an intermediate band or range of variables in which the weighting 
function varies between its full value of 1 and its smallest value of 0. 

This may be shown explicitly for the Helmholtz free energy A, if A~ is 
satisfactory in region I and A n is satisfactory in region II, by 

A = g l A l  + g2All = gA I + (1 - g)A n (2)  

where g = gl and g2 = 1 - gl. In regions other than I and II combined it is 
hoped that g may be so chosen as to provide favorable agreement with 
observation. The variable weighting function g may well be termed a 
switching function if it has the value unity over some large region of 
temperature and density and the value zero in some other large region. The 
more broadly applicable term "blend function" may perhaps be preferable 
under some circumstances, particularly if g were to be so defined as to not 
quite reach the stated endpoint values. 

All of the quantities of interest for thermodynamic properties are 
obtained from the free energy by suitable differentiations, with other 
numerical processes that may be indicated algebraically. The differenti- 
ations are partly with respect to temperature and partly with respect to 
density. Since the weighting function is included in the representation of 
the total free energy, there will necessarily be derivatives of that weighting 
function coming into the expressions for the various derived quantities. The 
derivatives of g are to be indicated here according to the abbreviations 

and 

gr  = T ( O g / O T ) p ,  gTT = T2(O2g/OT2)p 

go = p ( ~  g00 = p2(o2g/oo2)T 

gT. = TPO2g/OTao 

with p to indicate density and T to indicate absolute temperature. 

(3) 
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Various derived thermodynamic quantities follow quite naturally. In 
writing expressions for them, various well-known identities have been used, 
such as 

r a ( - A / R r ) / a r =  E / R T  

a( T2~(-A / R T ) / ~ T ) / ~ T =  C, f f  R (4) 

- p ~ ( - A / R T ) / a p  = P V / R T =  Z 

Among the directly derived quantities is the internal energy, E, indicated 
by 

E/  RT = g( E /  RT)I + (1 - g)( E /  RT)H + gT[ ( -  AI( RT) - ( -  AH/ RT) ] 

(5) 

We also have the so-called molar compressibility factor Z -- PV/RT,  given 
by 

Z = gZ 1 + (1 - g)Z n -  g o [ ( - A I ( R T ) -  ( - A n / R T ) ]  (6) 

and the molar heat capacity at constant volume 

Cv/ R = g( Cv/ R )i-~ (1 - g)( Cv/ R )H+ 2gT[ ( E /  RT),  - ( E / RT)n ] 

+ (2g r + g r r ) [ ( - A , / R T )  - ( - A I I / R T ) I  (7) 

Other quantities are also of possible usefulness. There are 

p(aZ/ap)T= gp(aZl/aP)T...I- (1 - g)p(aZll/aP)T-[" 2gp[ Z I - ZI1 ] 

- -  (go + go , ) [ ( -AI /RT)  -- (-Au/RT)I (8) 

and 

T(~Z/OT)p= g r ( ~ z i / ~ r ) p  -.[- (1  - g)T(~ZII/~T)p 

+gr[Z~ - Zn] - g ~ . [ ( - A , / R T )  - (-A,,/RT)] 

- go[ (EI/RT)  - (En/RT)]  (9) 

The quantities given by the last two of the preceding equations are useful in 



Thermodynamic Properties of Steam 55 

obtaining the heat capacity at constant pressure, 

Co~R= C v l R + [ Z +  T(OZIOT)]21[Z+p(OZIOp)] (10) 

Other quantities of interest can be generated in corresponding ways. From 
the expression for the compressibility factor, the pressure is seen to be given 
by 

P=gP1 + ( 1 - g ) P I I - g p [ ( - A I l R T ) - ( - A , , ( R T ) ] R T / V  (11) 

For a suitable approach to the switching process as here envisioned, 
there is a need to indicate the region within which the switching is to occur. 
In the present attempt, a simple variable s is to be used to indicate 
"distance" from the critical point. The value of s is to be zero at the critical 
point and to increase to larger values for all directions in moving away 
from the critical point. Two special fixed values, s~ and s2, are chosen. If s 
is less than the lesser, sl, then the region I is implied, where g = 1; if s is 
larger than s 2, then region II is implied, whereg  = 0. For s between s~ and 
s2, the region of a varying weighting or switching function is involved. 

This variability leads to special contributions to thermodynamic func- 
tions as indicated via Eqs. (3)-(11). The involvement of derivatives related 
to the distance function s occurs according to the following relations: 

ST = T(3glOT) o = (dglds)(TOs/3T) 

grr = T2(O2gl 0 T2) o = (d2g/ds2)(T3sl3 T) 2 + (dglds)( T2O2s/3 T 2) 

(12) 

gTo = Tp32gl 3 T3p = (d2glds2)(T3s/3 T)(p3sl3p) 

+ (dg/ds)( Tp32s/3 T3p) 

These equations will bring in considerable complexity to the situation, such 
as the local dependence of the so-called distance s on temperature and 
density, a topic to be explored below. 

3. GENERAL CONSIDERATIONS 

Intuitively, one might set as a goal for proper "blending" that the 
blended free energy and its first and second derivatives be intermediate 
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between thoese of the two free energy surfaces being blended. This goal, 
however, cannot be attained, as will now be shown. ,As an example, one 
may consider the behavior of the blended free energy, the energy, and the 
specific heat at constant volume for temperatures above critical. In the 
process of calculating heat capacity at constant volume for temperatures 
above the critical, difficulties may arise due to the behavior of the scaled 
and analytic representations of the free energy and the internal energy. 
According to Eq. (7), the differences in these "energies" are multiplied by 
derivatives of the switching function g in obtaining the total heat capacity. 
Thus, the blended specific heat may get out of the bounds in regions where 
derivatives of g are large, especially when the analytic and scaled free 
energy surfaces are not sufficiently close. In fact, the relationship of the two 
individual free energy surfaces is of crucial importance in obtaining sat- 
isfactorily blended derived properties, as will be demonstrated graphi- 
cally. In Fig. 1 the difference A(-A/RT)~c_c t=( -A /RT) ( sca led  ) - 
( -  A/RT)(classical) is shown schematically, plotted versus x = l / T .  In such 
an Arrhenius type graph [5], the slope is a difference in internal energy, 
appearing as A E / R ,  and the derivative of this slope versus temperature is 
the difference in heat capacities, A Cv/R. The blend curve is assumed to 

I - -  
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r 

Diagram (a) 

J 
J 

Xl  

Diagram (b) 

X0 X l  

X2 

Diagram (e) 

X0 X l  

i i i t 

x = l / T  

Fig. 1. Illustrative diagrams of differences in - A / R T  between scaled and classical formula- 
tions under conditions involving simple curves close to tangency, plotted vs 1 / T. 
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remain  inside the region between upper  and lower bounds of the 
A(-A/RT),c_ct curve and the zero axis within the intended switching 
region. The three diagrams of Fig. 1 show three possible cases of simple 
curves close to tangency, with one curve as a zero axis cutting across the 
other curve in diagram (a), tangent to the curve in diagram (b), and not 
quite contacting the curve in diagram (c). At small x, or high temperature, 
the acceptable formulation is the classical, represented by the zero axis. 

In diagram (a), a case is considered in which the slope of a supposed 
blend curve, shown as a dashed line, is made less in absolute magnitude 
than that of the original A(--A/RT)sr d curve so that the blended energy is 
intermediate between Esc and E~t. With tangency taken to occur at x = x~, 
the dashed curve is everywhere more nearly flat than the original curve, 
except at its terminus, where the slopes are identical. However, to achieve 
tangency, the second derivative for the dashed curve near x = x 1 is exces- 
sive, and the blend specific heat is not intermediate between scaled and 
classical values in this locality. F rom the relative positions of the original 
and the dashed curve, it may be inferred that a zero axis intersecting in the 
switching region is not compatible with acceptable (Cv//R)blend values. I t  
may  be noted that this also formally covers the still less favorable case of 
an abrupt  crossing in which a capability for approximate tangency in the 
vicinity is not involved. 

In diagram (b), a hypothetical case is considered in which the 
A(--A/RT)sc.~t curve is tangent to the zero axis at some value of x, called 
x 0. With blending considerations in mind, a dashed curve is also shown, 
tangent at x 0, but with its second derivative everywhere intermediate 
between values for the first curve and the zero axis. It is clear that the 
dashed curve also will have a slope intermediate between the slopes of the 
first or A(-A/RT)~_ct curve and the zero axis. With curves of simple 
structure, however, the dashed curve cannot  become tangent to the first 
curve at any x greater than x 0, such as indicated by x~ in the diagram. Any 
modification of the dashed curve to give a local approach to tangency at a 
point x would require a local curvature not compatible with the assumption 
of intermediacy of Cv/R between values for scaled and classical curves. 
Thus, the initial assumption of tangency of the A(-A/RT)~c .c t  curve with 
the zero axis does not appear  compatible with acceptable (Cv/R)b~end 
values throughout a finite switching interval. 

In the case of diagram (a), a straightforward at tempt to apply an 
actual switch function g would give a blend curve passing through the 
intersection of the primary curve and the zero axis but "curling around" 
appreciably to achieve tangency with the zero axis toward the left and with 
the primary curve toward the right of x I . In the case of diagram (b), the use 
of a switching region with x o and x~ as boundaries would lead to a blend 
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curve roughly as shown but requiring undesirable local curvatures to 
achieve tangency at both x 0 and x 1. In neither (a) nor (b) would the 
curvature remain throughout between that of the primary curve and the 
zero axis. This indicates that (Cv/R)blend would not remain intermediate 
between the two formulations throughout the switching region. 

In diagram (c), a case is considered in which A(-A/RT)s~.cI has its 
least but finite departure from the zero axis at some value of 1 /T ,  shown 
as x o. For the blend value for C~/R to be intermediate between the 
scaled and classical values, the second derivative for the dashed or blend 
A ( - A / R T )  curve must be in the range from zero to the second derivative 
value for the A(-A/RT)sc.cl  curve. A dashed curve is shown for a 
plausible choice for such a curve, with the desired property of intermediate 
second derivatives or intermediate C~/R values. From an examination of 
the diagram it is evident, however, that the slope of the intermediate curve 
is not intermediate between the slopes of the A(-A/RT)~c_ct curve and the 
zero axis; therefore, the blend energy will not be intermediate between the 
two energies. This may be acceptable, if C~/R and not E / R  values are the 
experimental data fitted. Thus, it is not possible for the free energy to vary 
smoothly from one surface to the other while both internal energy and 
specific heat remain within the bounds set by the two surfaces. 

4. C H O I C E  OF A S W I T C H I N G  F U N C T I O N  

The following form was studied for the switching function: 

g = x m / [ x  m q- ( 1  - -  X) m] 03) 

where x = (s2 - s)/(s2 - sl), and the range sl < s < sz is assumed. This 
gives g decreasing from unity at s = s I to zero at s = s 2. The exponent m 
may be chosen as any convenient integer. Tables I, II, and I I I  give values 
of g and its first and second derivatives for several values of m from m = 3 
to m = 8, also shown in Figs. 2, 3, and 4. In accord with Eqs. (3)-(12), the 
derivatives of g may make large contributions to the properties obtained by 
differentiation processes. The values for d2g/ds 2 for m = 3 near s = s1 and 
s = s 2, the end points of the table, are seen to start away from zero 
somewhat abruptly. The behavior for larger values of m may be more 
acceptable, since the corresponding changes occur less abruptly. 

A difficulty in using larger values for m is apparent  in examining 
values for d2g/ds 2 in Table III .  The second derivative changes from a large 
negative to a large positive value in a small range of x around the midpoint 
of the interval. Although larger values of m are the ones most favorable for 
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T a b l e  I I .  V a l u e s  o f  t h e  F i r s t  D e r i v a t i v e ,  dg/ds, W h e r e  g i s  t h e  

S w i t c h  F u n c t i o n  o f  T a b l e  I 

m = 3  m = 4  m = 5  m = 6  m = 7  m = 8  

0 0 0 0 0 0 

0 . 0 5  - 0 . 0 0 9 2 0 5  - 0 . 0 0 0 6 4 6  - 0 . 0 0 0 0 4 3  - 0 . 0 0 0 0 0 2 7  - 0 . 0 0 0 0 0 0 2  

0 . 1  - 0 . 0 4 5 6 0 0  ~ 0 . 0 0 6 7 7 2  - 0 . 0 0 0 9 4 1  - 0 . 0 0 0 1 2 5  - 0 . 0 0 0 0 1 6  

0 . 1 5  - 0 . 1 2 7 8 9 9  - 0 . 0 3 0 3 6 7  - 0 . 0 0 6 7 0 9  - 0 . 0 0 1 4 2 1  - 0 . 0 0 0 2 9 3  

0 . 2  - 0 . 2 8 4 0 2 4  - 0 . 0 9 6 9 0 0  - 0 . 0 3 0 4 5 8  - 0 . 0 0 9 1 5 1  - 0 . 0 0 2 6 7 0  

0 . 2 5  - 0 . 5 5 1 0 2 0  - 0 . 2 5 6 9 9 0  - 0 . 1 0 8 8 4 2  - 0 . 0 4 3 7 7 6  - 0 . 0 1 7 0 5 5  

0 . 3  - 0 . 9 6 6 3 9 9  - 0 . 6 0 1 3 3 2  - 0 . 3 3 4 5 0 2  - 0 . 1 7 4 8 6 6  - 0 . 0 8 8 0 5 2  

0 . 3 5  - 1 . 5 4 0 2 6 9  - 1 . 2 5 7 7 2 6  - 0 . 9 1 0 5 5 9  - 0 . 6 1 2 6 0 5  - 0 . 3 9 3 4 3 6  

0 . 4  - 2 . 2 0 4 0 8 2  - 2 . 2 9 5 6 7 4  - 2 . 1 4 2 1 4 9  - 1 . 8 5 4 8 1 7  - 1 . 5 2 3 5 0 4  

0 . 4 5  - 2 . 7 7 1 5 1 5  - 3 . 4 5 3 5 9 9  - 3 . 9 6 5 7 9 9  - 4 . 3 0 3 2 7 0  - 4 . 4 7 5 3 2 6  

0 . 5  - 3 .  - 4 .  - 5 .  - 6 .  - 7 .  

0 . 5 5  - 2 . 7 7 1 5 1 5  - 3 , 4 5 3 5 9 9  - 3 . 9 6 5 7 9 9  - 4 . 3 0 3 2 7 0  - 4 . 4 7 5 3 2 6  

0 . 6  - 2 . 2 0 4 0 8 2  - 2 . 2 9 5 6 7 4  - 2 . 1 4 2 1 4 9  - 1 . 8 5 4 8 1 7  - 1 . 5 2 3 5 0 4  

0 . 6 5  - 1 . 5 4 0 2 6 9  - 1 . 2 5 7 7 2 6  - 0 . 9 1 0 5 5 9  - 0 . 6 1 2 6 0 5  - 0 . 3 9 3 4 3 6  

0 . 7  - 0 . 9 6 6 3 9 9  - 0 . 6 0 1 3 3 2  - 0 . 3 3 4 5 0 2  - 0 . 1 7 4 8 6 6  - 0 . 0 8 8 0 5 2  

0 . 7 5  - 0 . 5 5 1 0 2 0  - 0 . 2 5 6 9 9 0  - 0 . 1 0 8 8 4 2  - 0 . 0 4 3 7 7 6  - 0 . 0 1 7 0 5 5  

0 . 8  - 0 . 2 8 4 0 2 4  - 0 . 0 9 6 8 9 8  - 0 . 0 3 0 4 5 8  - 0 . 0 0 9 1 5 1  - 0 . 0 0 2 6 7 0  

0 . 8 5  - 0 . 1 2 7 8 9 9  - 0 . 0 3 0 3 6 7  - 0 . 0 0 6 7 0 9  - 0 . 0 0 1 4 2 1  - 0 . 0 0 0 2 9 3  

0 . 9  - 0 . 0 4 5 6 0 0  - 0 . 0 0 6 7 7 2  - 0 . 0 0 0 9 4 1  - 0 . 0 0 0 1 2 5  - 0 . 0 0 0 0 1 6  

0 . 9 5  - 0 . 0 0 9 2 0 5  - 0 . 0 0 0 6 4 6  - 0 . 0 0 0 0 4 3  - 0 . 0 0 0 0 0 2 7  - 0 . 0 0 0 0 0 0 2  

1. 0 0 0 0 0 

0 
- 0 . 0 0 0 0 0 0 1  

- 0 . 0 0 0 0 0 2  

- 0 . 0 0 0 0 5 9  

- 0 . 0 0 0 7 6 3  

- 0 . 0 0 6 5 0 1  

- 0 . 0 4 3 2 5 8  

- 0 . 2 4 5 0 3 6  

- 1 . 2 0 4 7 6 4  

- 4 . 5 0 1 5 3 2  

--8, 
- 4 . 5 0 1 5 3 2  

- 1 . 2 0 4 7 6 4  

- 0 . 2 4 5 0 3 6  

- 0 . 0 4 3 2 5 8  

- 0 . 0 0 6 5 0 1  

- 0 . 0 0 0 7 6 3  

- 0 . 0 0 0 0 5 9  

- 0 . 0 0 0 0 0 2  

- 0 . 0 0 0 0 0 0 0 1  

0 

S - - S  1 

T a b l e  I I I .  V a l u e s  o f  t h e  S e c o n d  D e r i v a t i v e ,  d2g/ds 2, W h e r e  g i s  t h e  

S w i t c h  F u n c t i o n  o f  T a b l e  I 

m = 3  m = 4  m = 5  m = 6  m = 7  m = 8  

0 0 0 0 0 0 

0 . 0 5  - 0 . 4 0 6 8 0 4  - 0 , 0 4 2 1 7 0  - 0 . 0 0 3 6 6 9  - 0 . 0 0 0 2 8 8  - 0 . 0 0 0 0 2 1 2  

0 .1  - 1 . 1 1 0 4 9 1  - 0 . 2 4 0 6 8 9  - 0 . 0 4 3 9 0 3  - 0 . 0 0 7 2 4 8  - 0 . 0 0 1 1 2 0  

0 . 1 5  - 2 . 2 7 4 3 0 4  - 0 . 7 8 4 1 1 5  - 0 . 2 2 6 1 8 2  - 0 . 0 5 9 0 7 2  - 0 . 0 1 4 4 5 8  

0 . 2  - 4 . 0 9 6 4 9 5  - 2 . 0 4 0 2 2 6  - 0 . 8 3 5 7 3 9  - 0 . 3 0 8 6 7 2  - 0 . 1 0 6 7 8 4  

0 . 2 5  - 6 . 7 1 7 2 0 1  - 4 . 6 6 3 4 2 6  - 2 . 5 8 8 4 1 0  - 1 . 2 8 0 2 4 5  - 0 . 5 9 0 6 5 7  

0 . 3  - 9 . 9 5 0 0 5 2  - 9 . 5 6 0 9 5 0  - 7 . 1 0 0 1 6 3  - 4 . 6 0 1 5 6 2  - 2 . 7 5 1 7 9 1  

0 . 3 5  - 1 2 . 7 9 4 4 8 2  - 1 7 . 0 2 5 6 1 5  - 1 7 . 0 7 8 2 5 8  - 1 4 . 5 7 9 9 2 9  - 1 1 . 2 7 3 2 5 2  

0 . 4  - 1 3 . 1 1 9 5 3 4  - 2 3 . 7 2 5 9 1 3  - 3 2 . 4 5 6 7 9 9  - 3 7 . 3 3 9 9 9 0  - 3 8 . 2 5 2 1 2 2  

0 . 4 5  - 8 . 6 9 7 5 0 6  - 1 9 . 8 7 5 7 6 9  - 3 5 . 5 2 6 7 3 2  - 5 4 . 4 3 6 4 2 8  - 7 4 . 8 7 7 8 8 8  

0 . 5  0 0 0 0 0 

0 . 5 5  8 . 6 9 7 5 0 6  1 9 . 8 7 5 7 6 9  3 5 . 5 2 6 7 3 2  5 4 . 4 3 6 4 2 8  7 4 . 8 7 7 8 8 8  

0 . 6  1 3 . 1 1 9 5 3 4  2 3 . 7 2 5 9 1 3  3 2 . 4 5 6 7 9 9  3 7 . 3 3 9 9 9 0  3 8 . 2 5 2 1 2 2  

0 . 6 5  1 2 . 7 9 4 4 8 2  1 7 . 0 2 5 6 1 5  1 7 . 0 7 8 2 5 8  1 4 . 5 7 9 9 2 9  1 1 . 2 7 3 2 5 2  

0 . 7  9 . 9 5 0 0 5 2  9 . 5 6 0 9 5 0  7 . 1 0 0 1 6 3  4 . 6 0 1 5 6 2  2 . 7 5 1 7 9 1  

0 . 7 5  6 . 7 1 7 2 0 1  4 . 6 6 3 4 2 6  2 . 5 8 8 4 1 0  1 . 2 8 0 2 4 5  0 . 5 9 0 6 5 7  

0 . 8  4 . 0 9 6 4 9 5  2 . 0 4 0 2 2 6  0 . 8 3 5 7 3 9  0 . 3 0 8 6 7 2  0 . 1 0 6 7 8 4  

0 . 8 5  2 . 2 7 4 3 0 4  0 , 7 8 4 1 1 5  0 . 2 2 6 1 8 2  0 . 0 5 9 0 7 2  0 . 0 1 4 4 5 8  

0 . 9  1 . 1 1 0 4 9 1  0 . 2 4 0 6 8 9  0 . 0 4 3 9 0 3  0 . 0 0 7 2 4 8  0 . 0 0 1 1 2 0  

0 . 9 5  0 . 4 0 6 8 0 4  0 . 0 4 2 1 7 0  0 . 0 0 3 6 6 9  0 . 0 0 0 2 8 8  0 . 0 0 0 0 2 1 2  

1. 0 0 0 0 0 

0 

- 0 . 0 0 0 0 0 1 4 8  

- 0 . 0 0 0 1 6 5 2  

- 0 . 0 0 3 3 7 9  

- 0 . 0 3 5 2 8 4  

- 0 . 2 5 9 9 5 9  

- 1 . 5 6 1 7 8 8  

- 8 . 1 7 2 5 8 2  

- 3 6 . 1 3 8 6 6 4  

- 9 5 . 0 1 9 0 9 2  

0 

9 5 . 0 1 9 0 9 2  

3 6 . 1 3 8 6 6 4  

8 . 1 7 2 5 8 2  

1 . 5 6 1 7 8 8  

0 . 2 5 9 9 5 9  

0 . 0 3 5 2 8 4  

0 . 0 0 3 3 7 9  

0 . 0 0 0 1 6 5 2  

0 . 0 0 0 0 0 1 4 8  

0 
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Fig. 2. A power  weighted  switch funct ion,  g, vs x for m = 3, 5, and  7. 

a smooth behavior near the ends of the interval, the highly nonlinear 
behavior near the midpoint prevents them from being suitable for the entire 
interval. 

The good features of the low-m and high-m switching functions were 
combined by using the following power-weighted function: 

e, = g, = w , / ( w l  + w2)  

0 )  
1;3 
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X 

Fig. 3. F i rs t  der ivat ive  of a power  weighted  switch funct ion  vs x for m = 3, 5, 7. 
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Fig. 4. Second derivative of a power weighted switch function vs x for m = 3, 5, and 7. 

a n d  

where  

a n d  

with h~ 

1 - g = g2 = We//(  W1 -I- W2) (14) 

m l  W 1 = (hi~/hi2) / ( 1  "4- Clhl//hl2) m ' -n  

m 2 m 2 - -  n 

W 2 = (h2/h12)  / ( 1  + c2h2/h12) (15) 

and  h 2 given by  h 1 = s 2 - s and  h 2 = s - s 1 . Here  h12 = h 1 + h 2 
= $ 2  - -  $1, a n d  n is a th i rd  exponen t  with value  near  unity.  If  c I a n d  c 2 are  
chosen  to be  large, W 1 will be  near ly  p ropo r t i ona l  to h~, and  W 2 will be  
near ly  p ropo r t i ona l  to h i ,  except  near  the ends  of the interval ,  as h 1 --> 0 or  
hz-->0; there  W 1 becomes  p ropo r t i ona l  to h~" or  W 1 to h~ '2, respectively.  
Deta i ls  in regard  to derivat ives are  to be found  in A p p e n d i x  A. The  switch 
funct ion  s tudied in the ensuing t r ea tmen t  is as given b y  Eqs. (14) and  (15). 
A tenta t ive  select ion of the pa rame te r s  rn~ -- 5, m 2 = 6, n = 1, c~ -- 7.25, and  
e 2 = 3.75 in an  app l i ca t ion  to s team is exp la ined  la ter  in Sect ion 10. 

5. D I S T A N C E  F R O M  T H E  C R I T I C A L  P O I N T  

U p  to this point ,  no def ini t ion has  been  given for  d i s tance  f rom the 
cri t ical  point ,  even though a quan t i ty  s has  been  referred to as a "d i s t ance"  
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variable. One very natural choice made by Chapela and Rowlinson [1] was 
to use the r of the parametric variables r and 0 of the scaled equation. They 
are related to the physical variables T and P by 

AT* = ( T -  Tc)/Tc = (1 - b202)r (16) 

and 

Ap* = (p -- Pc)/Pc -- kOrB (17) 

In practice, however, the range in T, p space where the scaled equation 
applies is not bounded by a contour of constant r, but extends to larger r 
values as 0 ---> 0. Thus, it seemed advisable to make a more flexible choice of 
the distance variable s, such as 

(18) 

with C and q as parameters to be chosen. Small values for q lead to smaller 
rates of change of the switch function g versus physical variables at larger 
values of s. This moderates some of the effects of large derivatives in the 
larger-distance portions of the switching region. The parameter C provides 
a means for changing contours of equal s from circular (C - -  1) to oval 
shapes, increasing flexibility. 

A further adjustment, 

s=[(AT*)2/(1 + BAT*) + C(Ap*)2] q (19) 

was introduced to permit the contours to be displaced upward in the 
supercritical region to better resemble the shape of the region of validity of 
the scaled formulation. This is illustrated in Fig. 5, where contours are 
shown by solid lines for s -- 0.15, 0.2, and 0.25, with B as 40 and C as 0.01, 
and with q - 1/4. Dotted curves are shown for s = 0.125, 0.15, 0.175, and 
0.20, with B changed to 65 and C to 0.015. A trapezoidal region is shown 
corresponding to a similar area shown by Levelt Sengers [3] for which data 
for steam had been used in obtaining parameters in a scaled formulation 
[2]. The second choice of B and C gives contours which approach the shape 
of the scaling region. This function was used for the initial part of the work 
reported here. 

In the later part of the work, further adjustments were made to permit 
the switching region to be asymmetric in the density Ap*: 

s = [(AT*)2/(1 + BAT*) 2 + C(Ap*)2/(1 + DAp*)] q (20) 
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Fig. 5. Contours for distance from the critical point with B = 40, C = 0.01, s from 0.15 to 0.25 
for solid curves; B = 65, C = 0.015, s from 0.125 to 0.2 for dashed curves. Quadrilateral shows 
area in which scaled equation was fitted for H20. 

The distance function actually used was a refinement of (20) containing an 
even larger number of adjustable parameters. We refer to Appendix B for 
the form of this distance function. This appendix also contains a simple 
procedure for selecting values for B, C, and D. In addition, the appropriate 
derivatives of the more general distance function are given, as required for 
the calculation of thermodynamic functions. The derivatives of the distance 
function (19) and (20) are included as special cases of the more general 
form (B4). 

6. AN APPLICATION TO STEAM 

It has appeared appropriate to apply the preceding relations to some 
actual substance as a useful example. A substance for which an accurate 
classical equation and an accurate scaled equation are already available is 
steam. For the classical representation, that of Pollak [6, 7] is used. A small 
change is made with regard to some of Pollak's constants, namely, to 
introduce new ideal gas properties for water [8]. Near the critical point, the 
properties have been obtained from the scaled fundamental equation for 
the critical region of steam of Levelt Sengers [3], based on the so-called 
restricted linear model of scaling. Two sets of constants were presented in 
that paper, a "Set G," given three years earlier, and a more recently chosen 
"Set K," differing only in the analytic temperature dependence of the free 
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energy, set G fitting better at the higher temperatures, and set K better at 
the lower temperatures. 

7. CLASSICAL OR ANALYTIC EQUATION 

In the present updating of Pollak's ideal gas constants, the Helmholtz 
free energy A 0 is represented by 

18 

- A ~  a~ + a~ ln~'- E a%<X+3-J) (21) 
j = 3  

where ~-= 273.16/T,  with T as the Kelvin temperature. With the revised 
constants presented here, the value K = 3 is used, whereas K -- 1 if Pollak's 
constants are used. The coefficients ~9 are listed in Table IV. Pollak 
represented the contribution to the Helmholtz free energy due to equation 
of state or "real gas" effects using 41 constants. He based his data fit on 
accepted vapor pressures, with densities and enthalpies at saturation from 
the International Skeleton Tables, as well as a selection of best P- V- T data. 

Table IV. Coefficients a ~ Used in Representing the Helmholtz Free Energy 
for the Ideal Gas ;  Eq. 20 

J 4 
1 - 7 . 2 2 2 9 7 2 2 5 8 . 1 0  ~ 

2 - 1 .99662682.101 

3 0 . 2 3 7 1 8 2 0 3 8 . 1 0  -1 

4 - 0 . 811809877-10  ~ 

5 0 . 3 2 7 6 1 6 5 7 . 1 0  ~ 

6 2 . 5 5 1 8 0 4 1 2 2 . 1 0  ~ 

7 1.17829037-101 

8 - 3 . 4 1 8 5 9 2 8 5 5 . 1 0  ~ 

9 0 .9733505265 .10  ~ 

10 - 0 .2295994604 .10  ~ 

11 0 . 4 2 4 7 5 8 1 5 7 . 1 0  -1 

12 - 6 . 0 1 6 1 9 6 6 9 3 . 1 0  - 3  

13 6 . 4 0 8 6 3 6 7 2 4 . 1 0  - 4  

14 - 5 . 0 2 1 8 5 0 7 5 3 . 1 0  - 5  

15 2 . 7 9 7 5 0 3 7 8 7 . 1 0  - 6  

16 - 1 .045270809 .10  - 7  

17 2 . 3 4 2 3 4 4 1 4 3 . 1 0  - 9  

18 - 2 . 3 7 3 8 5 0 8 5 3 . 1 0  -11 
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Table V. Coefficients aj and Exponents i). and w of the 
Canonical  Equation of State, Eq. (21) 

j aj 9 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 
40 

0.4207954763 101 

-0.3924884203 102 

0.2565923808 102 

- 0.7837989290 101 

0.2201928225 101 

-0.1385999869 10 ~ 

0.3744815486 101 

- 0.3465071973 102 

- 0.8425527047 10 I 

- 0.9901368699 101 

0.1401964088 103 

0.1713603120 102 

- 0.3746614177 102 

- 0.1159673854 103 

- 0.1001408944 102 

0.3855720938 102 

0.1399466356 102 

0.1236023923 102 

- 0.4211642421 10 l 

0.1714623344 10 l 

- 0.3840140968 101 

0.2325085982 101 

- 0.2964092990 101 

0.1334760540 101 

0.3481083585 101 

- 0.2903770597 103 

0.5519480260 103 

- 0.3736712149 103 

- 0.1304997844.104 

0.8812436076.104 

- 0.1236192869-105 

0.3483212648.104 

- 0.5346445782.105 

0.3230718337.106 

- 0.9586042785.106 

0.1390137766.107 

- 0.7876922444.106 

- 0.7696132536.104 

0.5188648733.105 

- 0.7907132902.105 

3 

4 

4 

4 

5 

5 

5 

7 

9 

9 

10 

11 

12 

14 

1 

1 

1 

1 

2 

2 

2 

3 

3 

3 

3 

3 

3 

4 

4 

4 

1 

2 

3 

4 

6 

9 

0 

2 

4 

0 

2 

0 

1 

2 

0 

1 

2 

3 

3 

5 

1 

1 

5 

5 

2 

5 

6 

7 

5 

6 

7 

2 

3 

4 

5 

6 

7 

5 

6 

7 
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The contribution to free energy due to "real gas" effects is indicated by 

( - A / R T )  - ( - A ~  

24 40 

E aj 8%rtj- exp( -a82)  E aj ~r:'rtJ- ln(~/6r r )  (22) 
j =  1 j=25  

The variable 6 here is numerically equal to the density when given in 
g / c m  3. The constants aj, % and 9 are listed in Table V, and are as given by 
Pollak [6] in his Table 3. The coefficient a in the exponential remains 17.5, 
and 6rr, numerically the "density" of the liquid at the triple point, at 
0.99977602. In various calculations, the relation 8 --- o W l  Vo has been used, 
where the density p was in "ideal" Amagat units (p = Vo/V). V o is the 
volume of one mole of ideal gas at standard conditions, or 22,413.83 cm 3. 
W, the molecular weight of the isotopic mixture, was taken as 18.01555, 
nearly 0.002% above current estimates so as to retain the value Pollak used 
for the gas constant, R -- 0.461513 J �9 g - i .  K - l .  

8. SCALED EQUATION 

As mentioned with regard to earlier work [1], the physical variables 
temperature T and density p are represented by 

T--  T~[1 + (1 - b202)r] 

and 

p = pc[1 + kOr B] (23) 

where r and 0 are parametric variables somewhat like polar coordinates, 
useful in scaled representations by the restricted linear model. The formula- 
tion for the reduced free energy density, as 

A *  = + 0* *(Pc T*) + Aa.om (24) 

is in units of VP c. Here A~(T*) and/~*(Pc, T*) are regular functions of T*, 
while A . . . .  contains the critical anomalies. Conversion with Po Vo/RTo = 1 
as for an ideal gas leads to 

Pc To A* (25) 
- A / R T =  Po T p 
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Fig. 6. Cv/R for  s t e a m  a t  3.25 c m 3 . g  - l, n e a r  cr i t ica l  dens i ty ,  b y  Po l lak  (classical) ,  Level t  

Sengers  (scaled) ,  Set K ,  a n d  swi tch  f u n c t i o n  wi th  m 1 = m 2 = 6, n = 1, c 1 = c 2 = 0. " D i s t a n c e "  

wi th  B = 65, C = 0.015, D = 0. Va lues  f r o m  B a e h r  a re  fo r  3.223 c m  3 �9 g - l .  

where P0 is a pressure of 1 atm and T O is 273.15 K, as for standard 
conditions, p = Vo/V is the ideal Amagat density, and A is the molar free 
energy. Additional details, including the different background constants for 
"Set G"  and "Set K"  of Levelt Sengers [3] may be found in Appendix C. 

9. BEHAVIOR IN THE SWITCH REGION 

A graphical presentation of computed estimates for Cv/R near the 
critical density and involving a switching region between s I = 0.15 and 
s2 = 0.175 or between 674 K and 692 K (401~ and 419~ is shown in 
Fig. 6 using the "Set K"  constants and the switch function of Eqs. (14) and 
(15) with m 1 = m 2 = 6, n = 1, and c I = c 2 = 0. Some data of Baehr and 
Schom/icher are also shown [9]. The very large "overshoots" of the blended 
C v are clearly due to the large values of the second derivative of the switch 
function. By increasing the constants c I and c 2 of Eqs. (14) and (15) to the 
value 6, as shown in Fig. 7, considerable improvement is obtained, but the 
behavior in the switching region is still unsatisfactory. Further improve- 
ment can be made by modifications of the free energy surfaces so as to 
bring them closer together. 

Figure 8 shows plots of an Arrhenius type for the difference ( - A /  
RT)scale a -  (-A/RT)das~ica 1 versus 1/T, using the "Set K"  constants for 
the scaled formulation. When these were compared with diagram (c) of Fig. 
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s tants  of Level t  Sengers a n d  the classical  of Pol lak  for water.  
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1, it was seen that not all are in the favored relative position of near 
tangency with the zero axis, in the region 3.5 to 4 cm 3. g - l  and 653 to 
673 K. 

In the case of similar curves using the "Set G" constants of ref. [3], 
shown in Fig. 9 for several isochores, the general behavior is more accept- 
able according to the discussion given in regard to diagram (c) of Fig. 1, 
provided the zero axis can be suitably shifted upward. To accomplish this, 
there is a need for a revised choice of integration constants in regard to 
energy and entropy, in the fit of the scaling representation. In the present 
instance, the revision has been taken as a parallel shift of the zero axis to be 
above the curves, or adjacent to their convex side, in the region of the 
expected switching above the critical temperature. It can be seen that 
changes in the constants /z~ and /~' in the power series expansion of 
~t*(p*, T*) would be consistent with a preservation of character of the 
Arrhenius diagram equivalent to changing the position and slope of the 
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Fig. 9. Arrhenius type plot of (-A/RT)sca~-(-A/RT)cl~.+sical for the scaled Set G 
constants of Levelt Sengers and the classical of Pollak for water. 
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Fig. 10. Cv/R for steam at 3.25 cm 3. g-5,  near  critical density, by Pollak (classical), Levelt 
Sengers (scaled), Set G,  reset to/z o = - 11.2982,/Jq = -34.0192,  switch function with m 1 = m 2 
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zero axis. Explicitly, the change in -A /RT  is 

1.1,'.'1"o 
= e o V o r .  + - 

(26) 

If no change of slope is to be made, then 8/~-/J~t~' = 0. In the present 
instance, an addition of 0.0058 to both/z~' and/~]~, to give/~' = - 11.2892 
a n d / ~  = -34.0192, is found to subtract 0.00132 from ( -  A/RT)scale d. The 
constant Pc Vc To/Po VoTc in (26), which is Zc, the compressibility factor at 
the critical point, equals 0.2276. With this change, the zero axis for the 
A(-A/RT)~_~I plot is moved to a more favorable position for near 
tangency for temperatures somewhat above the critical. 

With these adjusted values for/~0 a n d / q  of the "Set G"  constants, the 
computed values for Cv/R are as shown in Fig. 10 for the case of 
m 1 = m 1 = 6, n = 1, and c I = c 1 = 0, a considerable improvement over that 
in Fig. 6, The shift to c I = c 2 = 6 gives the curves of Fig. 11, where the 
maximum "overshoots" of C v begin to approach the experimental noise. 

10. IMPROVEMENT OF SWITCHING PARAMETERS 

Further improvement of the switching process can be achieved by 
adjusting the parameters in the switch function so as to closely match the 
empirical estimates for an "ideal" blend function, as obtained from graphi- 
cal interpolations between the two free energy surfaces along a number of 
isochores. These graphical interpolations also determine empirical upper 
and lower bounds for the distance function, for which a refined representa- 
tion is developed. The procedure is as follows. In Figs. 12-17, values for 
A(-A/RT)~c_ d are shown versus 105/T for various isochores for specific 
volumes from 4.0 to 2.75 cm 3 �9 g-1. The free energy surfaces are those of 
Pollak, with revised ideal-gas properties, and the scaled surface "G "  with 
revised values of / ~ , / ~ .  For  the free energy in the switch region, a 
behavior as indicated by the heavy curves in these figures is desired. This 
curve is intermediate between the two free energy surfaces, and its curva- 
ture is also intermediate. It should therefore yield intermediate Cv/R and 
A/RT values; the internal energy, however, cannot be expected to be 
intermediate. 

On any isochore, the departure of the heavy line from the zero axis at 
a specified temperature, divided by the distance of the two surfaces at that 
temperature, provides an estimate of the local value of the desired switch 
function. Values obtained in this way for the empirical switch function 
along the four isochores with specific volumes of 2.75, 3.00, 3.25, and 3.50 
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Fig. 12. Arrhenius type plot of ( -  A / R T ) s c a l e  d - ( - A /_RT)c lass ica l  for water at 4.00 cm 3 �9 g -  1. 

Scaled is with adjusted integration constants for Set G of Levelt Sengers, classical by Po l l a k .  A 

curve switching from scaled somewhat below 670 K to classical near 720 K is shown. 

cm 3 "g-1, respectively, and plotted in Fig. 18, versus the distance variable 
x - -  ( s  - s l ) / ( s  2 - s l ) .  The distance function used is that given by Eq. (B4) 
in Appendix B; the parameter values used are given in Fig. B2. The choices 
of the inner and outer boundaries of the switching region were made 
basically in accordance with those in Figs. 14-17. Near the critical density, 
the switching region extends from 663 K to 721 K. For the outer boundary, 
the density limits were about 262 and 565 amagat. For the inner boundary, 
the lower temperature limit was about 637 K and the density limits at the 
critical temperature were about 313 and 504 amagat. The outer boundary 
extends beyond the range of validity of the scaled equation--the small 
discrepancies introduced by the increased difference between the two free 
energy surfaces near the outer boundary are outweighed by the reduction in 
size of the derivatives resulting from extending the switching range. 

With the newly adjusted switching function parameters and the modi- 
fied "Set G" constants, the blend values for C v / R  near the critical isochore 
are considerably improved, as may be seen from Fig. 19, which shows no 
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F i g .  13. Same as Fig. 12 except V = 3.75 c m  3 �9 g -  1. 

evident departure from desired behavior. The values follow the scaled 
formulation in agreeing with C v data of Baehr and Schom/icker above the 
critical temperature; they then have a smooth crossover in the region 390 ~ 
to 450~ roughly; and, lastly, they proceed upward with the classical 
values of Pollak. It is, of course, necessarily true that the free energy 
function progresses simply and smoothly between the scaled and classical 
formulation values in crossing the switching region. This is not necessarily 
achieved for all other functions, as has been pointed out. In connection 
with Fig. 1 it was shown that the internal energy will not be intermediate 
between scaled and classical when intermediacy is obtained for both free 
energy A and heat capacity C v. The behavior of the internal energy along 
the 3.25 cm 3 �9 g-1 isochore as indicated with the present switching adjust- 
ment is shown in Fig. 20, where percent deviations from the classical are 
shown for both scaled and blend values. The blend values are above both 
scaled and classical throughout the switching region, with no excursion 
whatever into the intermediate value region, just as predicted. The magni- 
tude of the discrepancy is rather small, however, namely, less than 0.02% at 
the maximum. 

The improvement in fit of Cv/R data in progresssing from the original 
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]Fig. 14. Same as Fig. 12 except V = 3 , 5 0  c m  3 �9 g -  1. 

"Set K" constants of Fig. 6 to the "Set G" constants for Fig. 19 can 
scarcely end the task of studying the switching problem. Other thermody- 
namic properties also exist which pertain to derivatives of -A /RT  with 
respect to density. These also must be examined in regard to desirable 
behavior. 

In Fig. 21 are shown values of the dimensionless quantity din P/dln p, 
related to the compressibility, for the scaled, classical, and blend formula- 
tions with the same parameters as used for Fig. 19. The curves here follow 
the computed "blend" values obtained for several isotherms. The separately 
plotted points show the corresponding scaled and classical values, where 
different, at the several densities of the calculations. It is seen that blend 
values not intermediate between scaled and classical may be given by the 
calculation. It is obvious that the relationships in regard to first and second 
derivatives with respect to temperature as pointed out in connection with 
the discussion of Fig. 1 must also apply qualitatively in regard to first and 
second derivatives with respect to density. 

As a practical detail, then, the idea might be considered as to whether 
the effort to attain nearly perfect behavior of Cv/R displayed in Fig. 19 
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Fig .  15. Same as Fig. 12 except V = 3 .25  c m  3 �9 g -  1. 

155 

may have been carried to a point beyond the optimum for an overall 
satisfactory representation of thermodynamic behavior in the blend region. 
Thus, some relaxation of the requirements for C~/R may permit further 
useful improvement for the density derivatives. This may be a consider- 
ation for later study. 

Some impressions as to problems involved in attempting to improve 
density dependences may be gained from a suitable graphical presentation. 
In Fig. 22 some curves are shown for 8(-A/RT)~c_cl for several values of 
temperature for specific volumes from 2 to 5.25 cm 3 �9 g -  1 as obtained from 
a computer print-out using the same modification of scaling constants as 
used in regard to Figs. 19-21, namely, "Set G," with #1 and /~2 as 
readjusted. It is perhaps easiest to consider the switching task as one of 
finding replacement curves that would follow the curves as shown in a 
limited region above and below the value for the critical volume 2 of 3.098 

aThis value was recently given by Levelt Sengers et al. [10]; alternatively, it is about 3.10 .  
Other values include 3.08279 (scaled, Levelt Sengers) and 3.155 (classical, P o U a k ) .  
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Fig. 16. S a m e  as Fig. 12 except  V = 3.00 c m  3 �9 g 1 

c m 3 . g  - 1 but with all going to the zero ordinate axis outside the critical 
region. In the general vicinity of the critical volume, the replacement or 
blend curves far above the critical temperature would be near the (hori- 
zontal) zero axis since the "blend" would be nearly or quite exactly 
identical with the classical values. (Thus it should be for the 450~ curve, 
which is beyond the range for simple scaling.) For isotherms only slightly 
above the critical temperature, the curves would "sag" appreciably below 
the zero axis in the critical volume region, but approach the axis at specific 
volumes both considerably below and also considerably above the critical 
volume. This may suggest that a very judicious choice of regions in which 
the switching occurs might fulfill the need for smoothly varying curves 
fairing into the zero axis in leaving the critical region. Allowing for a 
possibility for some small readjustment in/~0 and/~1, it may appear that an 
acceptable answer to switching requirements should be possible. The ques- 
tion of whether such a formulation would be reconcilable with previously 
adopted global choices for types of switching function and "distance 
contour" functions might require detailed analysis. 
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11. CONCLUDING REMARKS 

We have formulated a procedure for producing smoothly changing 
values for the thermodynamic properties for a substance in an intermediate 
region between two regions in which distinctly different empirical represen- 
tations have been obtained. The particular application is made by using a 
switching function as a changing relative weight in regard to Helmholtz free 
energies in connecting a scaled equation formulation near the critical point 
and a classical equation formulation further away. Other related thermody- 
namic functions follow naturally by differentiation. 

The study has included the choice of a usable form of switching 
function in regard to dependence on "distance" from the critical point. 
Various steps of generalization are shown in regard to improving an initial 
prescription for specifying "distance" from the critical point. The aim in 
this is for the capability of tailoring of the shapes of distance contours to 
help adjust for local behavior differences in the thermodynamic formula- 
tions to be reconciled. 

The most striking finding from this investigation is that the simple act 
of arranging for A, the Helmholtz free energy, in the switching region to be 
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Fig. 22. Behavior of the difference, scaled minus classical, for - A / R T for steam vs volume at 
several temperatures. Classical values by Pollak, scaled by Levelt Sengers. (Set G except 
for change of /~ to -11.2892 and /~' to -34.0192.) Temperatures are �9 374~ 
O 380~ �9 400~ �9 410~ I) 420~ • 430~ ~ 450~ 

between the respective free energy values from the scaled and classical 
formulations is not sufficient to guarantee a similar condition of intermedi- 
acy in the derived functions such as the internal energy U and the specific 
heat Cv. The finding is in fact even more strongly adverse! From simple 
graphical considerations it can even be seen that it is fundamentally 
impossible for such a condition of intermediacy to be obtained simulta- 
neously for both U and Q .  Accordingly, there should be some relaxing of 
expectations as to what the achievable satisfactory behavior of derived 
properties would be. The same considerations apply in regard to functions 
obtained by differentiation with respect to density. 

As to conclusions with regard to a desirable form for the switch 
function, it was found that a beginning assumption that the function might 
be of a "power weighted" type, Eq. (13), with exponent values of 4 or more 
in regard to "distance" into the switch region gave no particularly sudden 
change on entering the region. Raising these exponent values considerably 
would further improve the smoothness of switching here; however, it causes 
derivatives of the switch function to become excessively large near the 
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central part of the switching region. It was found that these overly rapid 
rates of change could be alleviated considerably by some algebraic modifi- 
cations in the defining equation, by making it more linear in the central 
part of the region. 

On a second topic, "distance" and the shape of "equal distance" 
contours, it is found that provision can be made for rather extensive 
adjustability. Some explorations with the objective of controlling derivative 
behavior by this means have been made, with very moderate success. 

In general, a problem with the behavior of derivatives is seen to be 
always present in the use of a switching function. If there is a region of 
moderate difference between "scaled" and "classical" formulations, this 
might become a region for "switching" or "crossover." However, there will 
be a problem of finding a suitable compromise between having a narrow 
region for switching, where the two formulations are not greatly different, 
versus a region broadened in the hope of decreasing the magnitudes of the 
derivatives of the switch function. If the region is broadened, however, the 
numerical differences between the two formulations then become large 
within the region and, though multiplied by smaller switch-function deriva- 
tives, may still give very sizable contributions to the derived thermody- 
namic functions. The best that can be hoped for is a judiciously chosen 
compromise. 

In view of the inherent difficulties in the overall task of "switching," it 
appears appropriate to place very special emphasis on the need for high 
quality of agreement between the two formulations throughout the region 
of "switching" or "crossover." It seems appropriate that such improved 
agreement might be sought by way of improvement in both scaled and 
classical formulations in the crossover region. 

As to improvements to be made in the scaled formulation, it is 
admitted that versions of the restricted linear model were the only ones 
used in the test cases that are here reported on, whereas extended scaling 
[ 10] may make a useful improvement permitting closer agreement with data 
further away from the critical point. It may also improve the slope of the 
"rectilinear diameter," which had been taken as zero in the present applica- 
tion of the restricted linear model. We would presume that some further 
adjustment in the analytic background for the scaled formulations might be 
desirable. The versions of analytic background that were used provided 
only a linearly dependent contribution to Cv/R versus temperature. One is 
inclined to speculate that nonzero derivatives of all orders are probably 
present and would in theory exist since they do exist for the ideal gas, and 
further contributions would be expected according to classical formulations 
pertaining to virial effects. 
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The limitations in the classical equation of state formulation include 
those inevitably present in attempting to approximate nonclassical critical 
behavior with functions for which exact fitting in the critical region is 
impossible. With perhaps from 30 to 60 or more constants used in the 
classical equations in achieving an approximate global fit to data in both 
vapor and liquid regions, it may be very difficult to include also a delicate 
matching of observed behavior in the region just above the critical tempera- 
ture. Finally, a close linkage between "scaled" and "classical" data correla- 
tion activity might be highly desirable to help in arriving at correlations 
suitably compatible in a convenient switching or crossover region. 
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A P P E N D I X  A: DERIVATIVES OF THE S W I T C H  F U N C T I O N  

Derivatives of the switch function indicated by Eqs. (14) and (15) are 
readily obtained. With the general relations of Eq. (13) and with dhl /ds  
= - 1 and dh2/ds = 1, one has 

dg/ds  = - W2(W 1 + Wz) -2dWl /dh l  - Wl(W 1 "4- W2)-2dW2/dh2 (A1) 

and 

d2g/ds 2= -2W2(W , + W2)-3(dWl/dh, )2+ W2(W I + W2)-2d2W1/dh~ 

- 2(W 1 - W2) ( W  1 + W2)-3(dW2/dh2)(dW,/dh, )  

+ 2Wl(W , + W2)-3(dW2/dh2) 2 

- W , ( W ,  + W2)-2d2W2/dh 2 (A2) 
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In the present special case, the derivatives indicated become 

d W 1 / d h  1 -- W,  h l l ( m l  + nClh l /h l2 ) / (1  + Clhl /h l2  ) 

d z W , / d h ~  = W l h ~ 2 I m , ( m  1 - 1) + 2ml(n - 1)e lh , /h l2  

+ n(rl -- 1 ) ( C l h l / h l 2 ) 2 ] / ( l  + Clh l /h l2)  2 

aW2/ah2 = W2hs + nc2h /h, )/(1 + 
(A3) 

d2W2/dh~  = W2h;2[m2(m2  - 1) + 2m2(n - 1)c2h2/h12 

+ n(n  - 1)(c2h2/h,2)2]/(1 + c2h2/h12) 2 

Equation (14) can also be used with functions of exponential type such 
a s  W 1 = exp( -  Cl~ ) and W 2 = exp(c2~), where 

= k / x  - 1/(1 - x )  + X a , ( x  - 1/2)" (A4) 

with x -- (s z - s ) / ( s  2 - sl). The coefficients a n in the indicated polynomial 
provide flexibility for tailoring the shape of the resulting curve for g. The 
expression for g in Eq. (14) can also be given as (1 + W 2 / W I )  - l  or 
[1 + exp(c~)] -~, where c = e I + c 2. With this use of the exponential, the 
function g would have the interesting property that all its derivatives with 
respect to s would be zero at s = s 1 and at s = s2. It does not appear likely 
that the function would be especially inferior to the power weighted 
function, examined here in considerable detail. 

For this exponential type function, the derivatives of interest would 
involve 

ag_ 
d~ cexp(c~)[ 1 + exp(c~)] -2 (A5) 

and 

d2g - c2exp(c~) �9 [exp(c~) - 1][1 + exp(c~)1-3 (A6) 
d~ 2 

with also 

d ~ / d x  = - k / x  2 -  1 / ( 1 -  x )2+ • n a n ( x -  1/2) n-1 
(A7) 

d 2 ~ / d x  2 = 2 k / x  3 -  2/(1 - x) 3 + X n ( n -  1 ) a , ( x -  1/2)" 2 
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Then as dx /ds  = - ( s  2 - sl)-1 and d2x/ds  2 = O, one has 

de de d~ 
ds - d~ dx (s2- sl)-' (A8) 

and 

d2e _[ dg + ( 2] 
ds 2 d f  dx - 2  d~2 I dx } J (s2 - sl)-2 (A9) 

APPENDIX B: THE DISTANCE FUNCTION 

The selection of suitable values for B, C, and D in Eq. (20) may be 
quite straightforward if the desired shape of the distance contours is simple 
and their desired position is known. Reference is made to Fig. B1 to help 
clarify the procedure. The temperature intercepts of the inner contour 
S = S 1 on the AT* axis are shown as AT~ above T c and AT~t (a negative 
value) below T C. The corresponding density intercepts on the AO* axis are 
shown as Ap} at a density greater than Pc and Ao~t (a negative value) 
below Pc. 
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and 

The parameters in question are then given by 

B = - (AT~t-' + ATe/-1), D = -- (mp/~/-1 "[- mp~/-1) 

c = 

The value for s I is given by s I = y~, where 

y ,  = -- A T~,A T h  

(B1) 

(B2) 

Similar relations might be used in regard to the s = s 2 contour, for which 
the temperature intercept on the A T* axis above T c is shown in Fig. B 1 as 
ATe2. The value for s 2 is then given by s 2 = y ] ,  with 

Y 2  = A T ~ t 2 / ( B  "{- ATe/2 1) (B3) 

A somewhat more generalized form than Eq. (20) is shown here as Eq. 
(B4): 

s = [(AT*)2(1 + F)(1 + B A T * ) - '  

+ C(Ap*)2(1 + E + AAT*)(1 + DAp*)-1] q (84) 

with 

4 4 
A = ~ a.Ap*", E = ~ e.Ap*" 

1 1 

and 

4 
F =  E f .ap  *~ 

1 

The numerous internal parameters now included provide considerable 
flexibility in adjusting the switching region. The choice of method of 
selecting suitable parameter values is to be left quite open for the present, 
however. It may possibly be expeditious for some of the parameters to be 
chosen separately, perhaps as zero, according to possible convenience, and 
for the remaining ones to be adjusted carefully as circumstances permit or 
dictate. One particular set of constants leading to the contour plots shown 
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Figs.  19 -21 .  rn I = 5, m 2 = 6, n = 1, c] = 7.25, a n d  c 2 = 3.75 were  used.  

in Fig. B2 is the same as used in calculations of thermodynamic quantities 
leading to the graphs of Figs. 19-21. Suitable logical statements in the 
computer program may help avoid problems from s in regions other than 
the desired one for switching. 

With a relation of the s = yq type occurring in Eqs. (18)-(20) and the 
more general Eq. (B4), the evaluation of Eq. (12) requires derivatives for 
which the following relations are of use: 

T a s / a T =  qyq- lTay/OT= qs~-l/qTvT 

T2a2s/aT 2= q ( q -  1)yq-2T2(ay/aT)2 + qyq-~T2a~/aT  2 

= q ( q -  1)s~-2/qT~v 2 + qs 1- ~/qT2yrr 

pas/ap = qyq-lpay/ap = -  qsl-l/qpyp 

p 2 a 2 s / a o  2 = q(q - 1)yq-2p2(Oy/ap) 2 + qyq-~p2a2y/ao 2 

= q ( q -  1)s]-2/qO2y ~ + qxl-]/qO~pp 

and 

Tpa2s/aTap = q(q - 1)sl-2/qTpyryo + qsl-l/qTpyrp (B5) 
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The required derivatives of y in the case of Eq. (B4) are as follows: 

TyT=[2AT*(1 + F)(1 + B A T * ) - ' -  BAT*2(1 +f ) (1  + BAT*) -2 

q-CAp*2A (1 q- DAp*) -1 ] T / T  c 

r ~ r  r = [2(1 + F)(1 + BAT*)- '  - 4BAT*(1 + F)(1 + BAT*) -2 

+ 2B2AT*2(1 + F)(1 + BAT*) -3 ]T2 /T  2 

P Y o  = [AT*2F,( 1 + B A T * ) - ' +  2CAp*(1 + E + AAT*)(1 + DAp*)-' 

+ CAo*2(E, + A,AT*)(1 + DAp*) -1 

- DCAp*2(1 + E + AAT*)(1 + DAp*)-2]O/Oc 

p~op=[Ar*2F2(1 + BAT*) -1 + 2C(1 + E + AAT*)(1 + DAp*)-'  

+ 4CAo*(E, + A,AT*)(1 + DAp*)-' 

+ CAo*2(E2 + A2AT*)(1 + DAp*)-' 

- 4DCAp*(1 + E + AAT*)(1 + DAp*) -2 

-2DCAp*2(E,  + A,AT*)(1 + DAp*) -2 

+ 2D2CAp*2(1 + E + AAT*)(1 + DAp*)-3]p2/p 2 

TOyro = [2AT*FI(1 + B A T * ) - ' -  BAT*2F,(1 + BAT*) -2 

+ 2CAp* .A(1 + DAp*) -~ + CAp*2AI(1 + DAp*) -~ 

- DCAp*2A (1 + DAp*) -2 ] Tp/(T~p~) (B6) 

The new quantities here are A, = ~nanAp *n-l, A 2 = ~ n ( n -  1)anAp *n-2, 
E l = ~ne~Ap *n-l, E 2 = ~ n ( n -  1)enAp *~-2, F, = Znf.Ap *n-l, and F 2 
= ~n(n - 1)f~Ap *n-2. 
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A P P E N D I X  C: T H E  S C A L E D  F O R M U L A T I O N  

In  using scaling on the restricted linear model,  the free energy density 
as given in Eq. (24) involves the following quantities: 

A~(T*)  = - 1 + A'~(A T*) + A~'(AT*) 2 + A~'(AT*) 3 

o* = v c / v =  o/oc 

~*(0c, r*) = ~ + ~r(zxr,) + ~ , ( ~ r , )  2 + ~ ' (Ar*)  3 

~ind 

Aa*nom = r2-~ak[ fo + f202 + f404 ] 

The coefficients involved are 

fo = - - [  f l ( 6 - -  3 ) - -  b2ay]/[2b4(2 - a ) ( 1 -  a ) a ]  

f2 = [ f l ( 8 -  3) - b2a(1 - 2 f l ) ] / [ 2 b 2 ( 1  - a ) a ]  

f4 = - ( 1  - 2 f l ) / ( 2a )  

(Cl) 

(c2) 

7 = 13(6 -- 1) (C3) 

a = 2 - f i ( 6 +  1) 

were used, with the numerical  values fl = 0.3505, b 2 -- 1.40991, a = 24.0999, 
a n d  k =  1.6837, wh ich  give 8 = 4 . 4 5 7 5 9 4 ,  7 = 1.2118867, and  a = 
0.087113297. The special constants of "Set G "  are A~' = -7 .874245 ,  A~' = 
25.844782, A~ = - 3.96522, /~' = - 11.295, /~' = - 34.025, /~' = - 14.35, 
and  /L~ = 10.4. The similar constants of "Set K"  are A~ = -7 .852192 ,  
A ~ = 2 8 . 4 7 0 4 0 6 ,  A ~ ' = - 5 8 . 7 2 2 4 5 1 ,  ~ = - 1 1 . 2 9 ,  / ~ ' = - 3 4 . 0 5 ,  / ~ =  
- 16.59, and  #~ = 59.84. The critical point  constants of Levelt Sengers are 
22.0477 M P a  or 217.59388 atm, Pc = 324.383 k g - m  -3 or 403.68892 ama-  
gat, V c = 3.08279 cm 3 �9 g-1,  and T c = 647.073 K (IPTS, 1969). 

8 = 1 + 2 / ( 1  - & l  - 2 / ~ ) )  

Here, a, fl, 7, and  6 are critical exponents,  and a, k, and b 2 are termed 
linear model  parameters.  In  the present calculations, the interrelations 
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APPENDIX D: D ETER MI N A TI ON  OF r AND 0 

A procedure was suggested by Moldover [11] for obtaining values for 
the parametric variables r and O from the density p and temperature T. 
This involved an iterative solution of a transcendental equation 

f ( z )  = 0 = c + Z l l  - z21 - e  (D1) 

by Newton's method, with C = - A p * ( b / k ) I A T * I  -t~, where Z =  bO. A 
slowness of convergence near Z = 1 was adjusted for by special approxima- 
tions, giving the initial value for Z suitably near 1 when A T* is near zero. 

Another form for the relationship of the previous transcendental 
equation is 

f ( z )  = o = D I z I  ~/~ + z 2 - 1 (D2) 

where D = I C I- 1/B. The iteration process by Newton's method then uses 

[ DlZ,,I l/t~ + Zff - 1] 

Zn+ , = Zn - [ OlZ~l l /Z~/ ( f lZ~)  + 2Z,,] (D3) 

or  

[ (2 /3 -  1)Z 2 + 1] 

Z n +  1 = Z n - I ~ Z  n 1 - [DIZ . I~ /e  + 2BZ2]  (D4) 

With this form, there is no convergence problem near Z = 1. There is that 
problem, however, at a limiting value of Z, Z L = (1 - 2f l)-  1/2, at which the 
denominator for the Z increment goes to zero. The instability due to this 
can be removed by multiplying the increment indicated by a quantity going 
to zero at Z = Z L and staying close to unity elsewhere. I1- I z / z d n l  m 
might do this for large n, and small m. A fairly satisfactory choice appears 
to b e n =  16 a n d m = l / 8 .  

The same Z L is a limiting value for the range of O and T that can be 
covered using the parametric variables. If I ZI is increased beyond ZL, the 
values of 0 and T that may be reached are values that could be reached 
with I Zl  less than Z L. There is in this way a double-valued surface, but 
only the sheet with I Z I less than Z L is considered to have physical meaning. 
With the constants used for steam, the limiting value Z L is 1.82879, which 
implies that 0 must be within the range ___ 1.54017. 
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The following FORTRAN subroutine, based on the preceding analysis, 
gives a way of calculating r and 0 (as R and  TH) in the case of simple 
scaling. Here T and RHO represents temperature and density, with TC and 
ROC as the critical point  values. The quantities BTA, CK, and B2  are fi, k, 
and  b 2. 

SUBROUTINE RTHETA (T, RHO, R, TH, BTA, CK, B2, TC, ROC) 
IMPLICIT DOUBLE PRECISION (A - H, O - Z) 
ZL- -  I . /DSQRT(1.-2.*BTA) 
R = 0.D0 
TH = 0.D0 
TS = (T - TC)/TC 
RS = (RHO - ROC)/ROC 
B = DSQRT(B2) 
DS = (CK/B/DABS(RS))**(1./BTA) 
Z = (1. + (DABS(TS) - TS)/2./(1. + B)*DS*B**(1./BTA))* 

1 (1. + (DABS(TS) + TS)/2.*DS)**(- BTA) 
Z = Z*RS/(DABS(RS) + 1.D - 16) 
IF (Z) 100, 250, 100 

100 DO 200 N = 1, 20 
DBT = TS*DS*(DABS(Z))**(1./BTA) 
DZ = (DBT + Z**2 - 1 . ) / (DBT/Z/BTA + 2.*Z) 
DZ -- DZ*DQSRT(DSQRT(DSQRT(DABS(I.-  ((Z/ZL)**4)**4)))) 
Z = Z -  DZ 
IF (Z**2 - ZL**2) 120, 250, 250 

120 IF (DABS(DZ/Z) - 1 . D -  12) 250, 250, 150 
150 CONTINUE 
200 CONTINUE 
250 TH = Z /B  

R = T S / ( 1 . -  B2*TH**2) 
IF (R) 300, 350, 350 

300 WRITE (6, 1040) R 
1040 FORMAT (10X, 4HR = ,E16.8) 
350 CONTINUE 

R = DABS(R) 
RETURN 
END 

A P P E N D I X  E: C O M P U T A T I O N A L  C O N S I D E R A T I O N S  

The calculation of the rmodynamic  properties, including the effects of a 
switch function, m a y  be in considerable measure a study in computer  
programming.  A plausible procedure,  starting with an indicated set of 
values of temperature and density, m a y  proceed in the following way. If  the 
temperature T is compared  with the critical, Tc, and  is found  to be above it, 
then the "distance" s f rom the critical point  is to be computed  and  



92 Woolley 

compared with s I and s 2 to determine the value for the switch function g 
and its derivatives if needed. If s is less than s 2, then values for the 
parametric variables r and 0 are required, based on the temperature T and 
density O. The calculation is then quite straightforward. On the other hand, 
if the temperature is below the critical temperature, there will be a first task 
of determining whether the system point is within or outside the vaporiza- 
tion dome. If it is not known to be outside, it may be necessary to compare 
the density with that of the saturated liquid or vapor. If it is between these 
two, then properties for both liquid and vapor are required. 

In principle, for a limited range of temperature below To, the compari- 
son might be made using scaling variables by at first taking 0 = - 1 for the 
vapor and 0 = + 1 for the liquid, with r = A T * / ( 1 -  b202) to estimate 
densities, but varying these for s > sl, as needed to iterate to have equality 
for vapor and liquid in pressure and in Gibbs free energy. This further 
adjustment is required since use of the switching function, bringing in 
effects of the classical formulation, will move the saturation conditions 
away from 0 = ___ 1. The procedure with r and 0 adjustment is usable for 
steam down to temperatures near 600 K, or nearly 50 deg below critical. At 
the limiting temperature, the actual saturation vapor density goes beyond 
even the limit for the metastable region for simple scaling, namely, 0 
1.54. Thus, the using of r and 0 of simple scaling as an indicator of T and p 
becomes impossible at lower temperature. It may be noted that even 
negative vapor densities would be suggested by the simple scaling model for 
T less than 587.08 K. However, the regions in question are so far below the 
critical temperature that a purely classical formulation would be used 
anyway. 

In one particular computation scheme compatible with using r and 0 
basically as adjustment variables, the certainty as to the temperature 
desired permits a primary use of r alone as an adjustment variable, with 0 
then given secondarily from the r and T values according to the relation for 
the linear scaling model 

0 =  _ _ _ [ ( 1 - ( T I T C -  1)lr)/b2] '/2 (El)  

with the sign determined by comparison between the density and its critical 
value. In case the desired values for density and temperature are known, it 
becomes expedient to have a procedure for determining the corresponding 
values of r and 0. This is carried out with a suitable subroutine for the 
computer program, as discussed in Appendix D. 

A number of exploratory calculations were made in the single phase 
region along paths of constant specific volume using uniform steps in 
temperature. Each path was started at a chosen elevated temperature and 
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then continued at successively lower temperatures until some chosen lower 
bound was reached, or until encountering the vaporization dome, where an 
attempt would occur at entry into the region of nonexistence of any scaled 
representation. 

Another type of calculation to be considered is made with steps of 
rising temperature at constant density under conditions of equilibrium 
between vapor and liquid. This has application to a comparison with 
experimental data for the effective or apparent heat capacity at constant 
volume. Some details of the calculation in the coexistence region may be 
appropriate for special mention. A procedure for following a path of 
increasing temperature at constant density was prepared. The initial as- 
signed values of temperature (no lower than ~6 0 0  K in the preliminary 
program) and (average) density are to be within the vaporization region. 
The substance then can be described as "wet steam." The program uses the 
accepted linear scaling relationship at first to make initial estimates of 
values for the parametric variables r and 0. Initial values 0a = - 1 for the 
vapor and 0 L = + 1 for the liquid are assigned, and r -- AT*/(1 - b20 2) or 
AT*/(1 - b 2) is calculated. This value of r is taken initially for both r c for 
the vapor and r L for the liquid. In general, these would be correct only 
according to the scaling model. An iteration lo0P for two independent and 
two dependent variables is then entered into in which the two parametric 
variables, r c for the gas or vapor, and r L for the liquid, are varied as 
independent variables, with the objective of bringing to zero the two 
differences 

( -  GIRT)L-  ( -  GIRT)c and (PI.IPc - Pc/Pc) (E2) 

These are to give equality of the Gibbs free energy G for liquid and 
vapor and also equality of pressure P for liquid and vapor. This is 
equivalent to the double tangent construction involving the Helmholtz free 
energy A plotted versus volume V. It can be regarded as formally equiva- 
lent to invoking the Maxwell condition, if that had been feasible. In the 
loop, a special subroutine is used twice, once with gas variables r 6, 0a, etc., 
and once with liquid variables, rL, 0L, etc., on each passage. In accordance 
with the switch function chosen, it blends together function values for the 
scaled and the classical or analytic representations, with each given by a 
separate inner subroutine. The relation 

o = (1 - a r * / O / b  (E3) 

is used, with r either as r a or as r/., while the 0 resulting is taken with the 
appropriate sign according to whether it is for vapor or for liquid. 
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The classical inner subroutine responds directly to values of tempera- 
ture T and density O- As set up, the scaled inner subroutine uses r and 0 
values to generate the anomalous contribution and also T and 0 values to 
give necessary reduced variables and to convert to units compatible with 
the classical functions. The blending subroutine makes use of another inner 
subroutine which contains details of the actual switch function employed. 
The list of arguments carried into this inner subroutine includes the 
assigned fixed values for s 1 and s 2, demarking the regions within which a 
calculated variable s for "distance" from the critical point will result in the 
switch function g having values g = 1, for s < s I ; g = 0, for s > s2; or a 
value of g between 1 and 0, for s 1 < s < s 2. 

This inner subroutine defines the dependence of s on the physical 
variables T and O, or equivalently on AT* and AO*. It also supplies values 
for the necessary derivatives for contributions to thermodynamic functions. 
The iteration toward the condition of equality for the Gibbs free energy 
and for pressure for vapor and liquid phases is continued until satisfactory. 
The assigned density O is then compared with the densities of vapor and 
liquid at saturation. If it is between them, the fraction as vapor is taken as 

xa = Oa(OL/O -- 1)/(PL -- PC) (E4) 

and the fraction as liquid as x L = 1 - x a. The internal energy, in units of 
the gas constant R, is then stored, in single array, based on 

U / R  = ( x c ( E / R T ) G  + x L ( E / R T ) L ) T  (E5) 

and the temperature T is similarly stored. However, if the density compari- 
son shows that the assigned density is outside the vaporization dome, the 
action passes to the corresponding one of two differing parts of the 
program, involving an iteration loop with either a single calling of the 
subroutine for vapor or else one for liquid. For this, there is a single 
independent variable r c, or else rL, according to the region involved, 
and the dependent variable to be brought satisfactorily to zero is either 
( P v  - -  P)/Pc or (PL - P ) / P c  correspondingly. For  successive points after the 
path of increasing temperature has emerged from the vaporization dome, 
the same part of the program with a single independent variable continues 
to be used. However, a single use of a subroutine to supply the needed r 
and 0 is brought in before entering the iteration loop, by which the stated 
density as well as temperature can be complied with immediately. The 
quantities U~ R and T continue to be stored in arrays as before. When the 
temperature range is completed, numerical differentiation gives the esti- 
mated C ~ / R  values. 
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